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ABSTRACT

The mass-absorption cross-section of black carbon (MACg() is an essential parameter to link
the atmospheric concentration of black carbon (BC) with its radiative forcing. When a direct
calculation of MACgc based on observations of aerosol light absorption and BC mass con-
centration is impossible, we rely on modeling and simulations to estimate MACgc, but cur-
rently, there is no consensus model that can be relied on for accurate predictions across all
atmospheric environments when BC particles have different coating thicknesses. Here, we
applied five MACgc prediction models (including three light scattering theories, an empirical
model based on observations of particle mass concentrations, and a machine learning
model developed in our previous work) to aerosols from three Department of Energy (DOE)
Atmospheric Radiation Measurement (ARM) field campaigns. While many studies have found
that increasing the complexity of the models helps to constrain biases of the estimated
MACgc, our effort is to evaluate the models based on the criteria of simplicity and accuracy.
We find that our machine learning model (support vector machine for regression, SVM) gen-
erally performs well across all DOE ARM field campaign data, while the accuracy of core-
shell Mie theory depends on the bias correction algorithm applied to filter-based light
absorption data. Generally, the empirical model for internally mixed particles that we consid-
ered tends to over-predict MACgc, while Mie theory for externally mixed particles tends to
under-predict MACgc. An examination of the influence of coating material on BC cores sug-
gests that the performance of our current SVM model is degraded when the BC is thickly
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coated (e.g., it has undergone aging and mixing with other materials in the atmosphere).

Introduction

Black carbon (BC) has an important and complex, yet
uncertain, role in the climate system (Bond et al.
2013). Multiple approaches exist to quantify atmos-
pheric BC, but these are operationally defined (Lack
et al. 2014; Petzold et al. 2013). Herein, we focus on
aerosol light absorption measurements, which typically
either quantify light attenuation through a filter or
utilize a photoacoustic technique. These instruments
provide an aerosol light absorption coefficient (B,ps)
at the wavelength(s) of light at which the measure-
ment occurs. Measurements of B,,s (and absorption
aerosol optical depth) are often used to evaluate pre-
dictions of aerosol radiative forcing in chemistry-cli-
mate models (e.g., Gliff et al. 2021). However, the
challenge is that BC emissions within these models
are mass-based (e.g, Tg year ', as in Bond et al.

[2013] and McDuffie et al. [2020]), so a conversion
between B,,, and BC mass concentration (Mpc) is
required for model evaluation. Often, this conversion
factor is referred to as the mass-absorption cross-sec-
tion of BC (MACgc), that is, By = MACpc - Mpc.
There are several approaches that one can follow to
define a value of MACgc. With observations of both
B.,s and Mpc, one can derive observed values of
MACxgc at a given wavelength of light (1) through time
and/or space (Yuan et al. 2021; Cho et al. 2019; Cross
et al. 2010). In the absence of experimental observa-
tions, MACgc has traditionally been assumed to be
75+12m? g71
of mostly laboratory studies by Bond and Bergstrom
(2006); in a separate review of studies occurring after
2006, Liu et al. (2020) obtained a similar value
(8.0+0.7m* g_1 at 550nm). To extend MACgc to

at 550 nm based on the classical review
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different wavelengths, a power-law function is often
used:

Jl —AAEpc
MACBc(i) = MACBc(SSO nm) . < >
550 nm
(1)

where AAEgc is the absorption Angstrom exponent
for BC. The value of AAEgc is frequently assumed to
be 1 (Lack and Langridge 2013; Bergstrom, Russell,
and Hignett 2002), although this value varies in the
literature depending on the adopted method. For
example, Bahadur et al. (2012) obtained a value of 0.6
from satellite data, while Gyawali et al. (2017) used
core-shell Mie theory to infer a value of 1.7. However,
many analyses of field data that provide more direct
estimates of AAEpc suggest that this value falls
between roughly 0.9 and 1.5 (e.g., Li and May 2020a;
Saturno et al. 2017; Cappa et al. 2016; Backman
et al. 2014).

In this work, we focus on 870nm, specifically,
because it is the operating wavelength of one model of
the Droplet Measurement Technologies Photoacoustic
Extinctiometer, which we have used in prior work (Li,
McMeeking, and May 2020). Thus, if we propagate
these uncertainties in both MACg: and AAEgc
through Equation (1) to predict MACgpc at 870nm by
assuming that MACgc at 550 nm is represented by a
normal distribution (7.5+1.2m? gfl) and AAEgc is
represented by a linear distribution bounded by 0.6
and 1.7, we obtain a value of 4.46+0.98m” g '; the
assumption of a normal distribution for AAEpc
(1.1+0.3) yields similar values of 4.56+0.94 m* gfl.
Moreover, BC likely dominates light absorption at
870 nm. Tar-like brown carbon has a MAC of roughly
1 m? g{1 (Corbin et al. 2019), while mineral dust has a
MAC of roughly 0.05m”> g~ (Caponi et al. 2017), so
large quantities of these other absorbing aerosols (rela-
tive to BC) are required to influence MACgpc.

However, experimentally derived values of MACgpc
from field observations do not always agree with these
“community standards” of MACgc and AAEpc.
Specifically, for ambient aerosols, MACgc has been
reported within the range of 2.3-15m” g~ ' at 550 nm
(Mbengue et al. 2021; Ohata et al. 2021; Yuan et al.
2021; Cho et al. 2019; Gyawali et al. 2017; Zanatta
et al. 2016; Nordmann et al. 2013; Kondo et al. 2011;
Moosmiiller et al. 1998), and we previously reported
values between roughly 3 and 4m” g~ ' at 870 nm (Li
and May 2020a). There is similar variable agreement
among laboratory studies of torch-generated BC par-
ticles (e.g., Cross et al. 2010; Scarnato et al. 2013;
Forestieri et al. 2018).
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Variations in MACgc may exist for a myriad of rea-
sons. If the BC is internally mixed with other aerosol
components, its light absorption may be enhanced
(Yuan et al. 2021; Conrad and Johnson 2019; Lack and
Cappa 2010; Bond, Habib, and Bergstrom 2006;
Jacobson 2001), but these mixtures are non-homoge-
neous (Fierce et al. 2016, 2020; Zhang et al. 2017;
Moteki, Kondo, and Adachi 2014; Adachi, Chung, and
Buseck 2010). Values of absorption enhancement (E,p)
can be determined by measuring MAC before and after
removal of particles’ coating in a thermodenuder (Lack
et al. 2014; Cappa et al. 2012; Knox et al. 2009), and
previous studies observed a broad range E,ps (1.06-4.5)
due to different experimental conditions (Wei et al.
2020). Similarly, the morphology (e.g., density, shape,
and size distribution) of the BC particles influences
their light absorption (Wu et al. 2018; Zhang et al.
2008). During atmospheric transport of BC, chemical
aging may alter MACpc (Xu et al. 2018; Subramanian
et al. 2010; Zaveri et al. 2010; Knox et al. 2009), likely
due to transformations to the BC mixing state and/or
its morphology. Electronic microscopy can provide the
accurate measurement of BC aggregates and their mix-
ing with other materials (Wang et al. 2021), but it
remains difficult to capture the change of BC morph-
ology across the whole aging process. Consequently,
some studies have proposed the use of location-specific
MACgc (Srivastava et al. 2021; Ram and Sarin 2009).

When constrained by observations, a number of
theoretical approaches have the potential to etimate
MACp( at a given incident wavelength of light. Core-
shell Mie theory serves as one approach for estimating
optical properties of internally mixed BC through the
assumption of spherical BC cores that are uniformly
coated by organic and inorganic components
(Jacobson 2000; Bohren and Huffman 1983). Likewise,
Mie theory can be applied to external mixtures of BC
and other components (Li et al. 2019; Lesins, Chylek,
and Lohmann 2002). Another commonly used theor-
etical approach is the Rayleigh-Debye-Gans approxi-
mation for fractal aggregates (RDG-FA) (Conrad and
Johnson 2019; Sorensen 2001; Dobbins and Megaridis
1991). In the RDG-FA approach, the total absorption
of an aggregate is the sum of absorption of individual
BC spherules. For any theoretical approach, its accur-
acy is sensitive to the required input parameters, such
as BC refractive index, particle morphology, and par-
ticle mixing state, all of which are difficult and/or
labor-intensive to measure (Liu et al. 2020; Forestieri
et al. 2018; Zanatta et al. 2018; Garcia Fernandez,
Picaud, and Devel 2015; Lack and Cappa 2010).
However, even if these parameters can be measured
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accurately, the theoretical formulations may not truly
capture all of the underlying physics (Bond and
Bergstrom 2006).

To address potential challenges related to an
incomplete understanding of the underlying physics,
several prior studies have developed empirical models
describing the relationship between MACgc and other
observed aerosol-related parameters. For example,
based on the observational relationship between the
MACpgc of flare-generated BC and key flare parame-
ters (e.g., flare temperature, volumetric flow rate, and
carbon-hydrogen ratio), Conrad and Johnson (2019)
modeled MACgc at 550 nm as a power-law equation
(cf., their Equation 5). Similarly, Chakrabarty and
Heinson (2018) examined the relationship between
MACgc and the ratio of total particle mass to BC
mass for both observational and simulated data of BC
particles, and they proposed an empirical model (cf.,
discussion of their Figure 2; our Equation (6) below).
Likewise, to improve the parametrization of BC
absorption in climate models, Wu et al. (2018) sug-
gested a correction of E,,, using an exponential func-
tion (cf., their Figure S13). Overall, these empirical
models provide straightforward and computationally
inexpensive methods toward improving the prediction
accuracy of BC radiative forcing. However, building
these models requires the assumption of a functional
relationship between the independent and dependent
variables, which is often subjective unless there is an
underlying physical model. Furthermore, since the
empirical models are typically simple in their struc-
ture, their accuracy may degrade when the experimen-
tal conditions are different from the one where the
model is generated.

To mitigate uncertainties in MACgpc related to
assumptions related to the appropriate theoretical for-
mulation and aerosol properties, we previously applied
different data-driven approaches to predict MACgc at
870nm for ambient and biomass burning aerosols (Li
and May 2020a). We differentiate this approach from
the aforementioned empirical models because our
data mining method seeks to discover unexpected pat-
terns and identify hidden relationships in the datasets
with no pre-defined mathematical model. As
described in Li and May (2020a), our models use tem-
porally varying aerosol properties, namely observa-
tions of B, aerosol light scattering coefficients
(Bgcat)> and number and volume size distributions, as
input variables to the models in the prediction of time
series of MACpc. The models were constructed using
ambient aerosols from the US Department of Energy
(DOE) Atmospheric Radiation Measurement (ARM)

Two-Column Aerosol Project (TCAP) and then
applied to two independent validation datasets: the
DOE ARM Cloud, Aerosol, and Complex Terrain
Interactions (CACTI) project and the 2016 FireLab
component of the Fire Influence on Regional to
Global Environments and Air Quality (FIREX-AQ)
campaign, which was sponsored by the US National
Oceanic and Atmospheric Administration. Based on
the model performance metrics in Li and May (2020a)
and an extended uncertainty evaluation in May and Li
(2022), we put forth support vector machine (SVM)
for regression as the recommended technique for use.

In this work, we present an expanded evaluation of
our SVM model on the prediction of MACgc for
ambient aerosols from different atmospheric environ-
ments around the world, including CACTI, the DOE
ARM Observations and Modeling of the Green Ocean
Amazon (GOAMAZON) project, and the DOE ARM
Layered Atlantic Smoke Interactions with Clouds
(LASIC) project. Furthermore, we systematically com-
pare the MACpc estimated by our model and existing
theoretical and empirical approaches, including some
that account for the enhancement to aerosol light
absorption that may occur when BC is internally
mixed, in order to compare our machine-learning
model to established approaches and to assess the
generalizability of our model.

Methodology

Within this section, we describe three different
approaches to predict MACpc, namely SVM, theoretical,
and empirical models, along with a description of the
observational data that were used for model evaluation.

SVM modeling

We provide a detailed discussion of our machine
learning model in Li and May (2020a). Briefly, SVM
maps independent variables into a higher-dimensional
space where linear regression is performed (Smola
and Scholkopf 1998; Drucker et al. 1997; Cortes and
Vapnik 1995). Fundamentally, the SVM approach
selects a subset of observations from the training data-
set as “support vectors” to define the margins of
hyperplanes for the model (and to discard “unwanted”
data samples), which makes the model robust to data
noise and applicable to datasets with substitution of
input variables. SVM can handle non-linear problems
through the use of non-linear kernels, and it is less
prone to over-fitting than other regression techniques.
Our selection of the hyperplane and kernel function
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Raw Data Input Machine learning Default
measurements preprocessing variables model
modules output
Module 1 B,,
- Preprocess ans)
| Bue (multiple ) | T e (467, 528, and 652 nm)
- Module 2 Bscat MAC
I Bscat (Multiple A) | ‘ Correct filter-based » (467, 528, and 652 nm) » SVM » SVM
B,os Measurements (870 nm)
N1’ NZ’ N3! Ntotal
Aerosol size
distribution Module 3 FN1, FNZ’ FN3

Convert B, and By

V1! VZ’ V3’ Vtotal

to same wavelengths

FV1 ’ FVZ! FV3

Figure 1. Schematic flow chart showing the flow for estimating MACsym at 870 nm. N;, N, and N3 represent the aerosol number
concentration falling within the size class bins (<50 nm, 50-200 nm, and >200 nm), while V;, V,, and V3 represent the aerosol vol-
ume concentration within the size class bins (<1000 nm, 1000-2500 nm, and >2500 nm). The sum of the N; and V; values equals
the total aerosol number or volume concentrations (Neotai and Vigra)). Fj1, Fj2, and Fj3 represent the fraction of total aerosol concen-
tration falling within each class for either number (Fy;) or volume (Fy;), and by definition, the sum of both Fy; and Fy; equals 1.

See the online version for a colorized figure.

can be found in the supplementary materials of Li
and May (2020a). However, SVM is not without limi-
tation; for example, it is more computationally expen-
sive than linear regression, and it may be difficult to
interpret the derived regression model. In addition,
SVM can have large prediction errors when extrapo-
lating beyond the training parameter space; in other
words, the extrapolation of SVM to unseen data
remains uncertain.

We designed our SVM model with the intent to
utilize aerosol measurements common to many obser-
vational sites in its prediction of MACgpc; moreover,
we selected the input variables to emulate light scat-
tering theories. For example, because Mie theory
requires particle size as an input, we incorporated par-
ticle number distributions and particle volume distri-
butions as candidate variables for our models.
Similarly, we considered observations of B, and By,
as proxies for aerosol composition, because they are
widely measured and their spectral dependencies (i.e.,
AAE and the scattering Angstrom exponent or SAE)
have been used to categorize absorbing aerosols by
type (Cappa et al. 2016; Cazorla et al. 2013).

Prior to input to the SVM model, the aerosol meas-
urements are pre-processed to apportion the particle
number and volume size distributions into a few size
bins; to apply correction factors to filter-based absorp-
tion photometer data using either Bond, Anderson,
and Campbell (1999) or Li, McMeeking, and May
(2020); and to convert B,,, and B, to “standard”

wavelengths that are used in filter-based absorption
photometers common to many long-term ground sites
(467, 528, and 652 nm in our model). These pre-proc-
essing steps have been detailed described in Li and
May (2020a) and are available in an online repository
(Li and May 2020b). We ultimately input 20 candidate
variables into the model to determine MACpc at
870 nm (referred to as MACgyy in Figure 1).

Theoretical modeling

We considered two commonly used theoretical mod-
els: the RDG-FA approximation and Mie theory. In
general, the RDG-FA approximation for MACpc can
be expressed as:

MACrp6(1) = or. B(m(2)) 2)

o A

where E(m(i) = Imag(%—;;), p is the material dens-
ity of BC (1.8g cm ), m is the complex refractive
index of BC, and 4 is the wavelength of light (870 nm
in the present work). When using m =1.95+ 0.79i as
recommended by Bond and Bergstrom (2006),
MACgpg is 3.06 m? gf1 at 870 nm. However, as dis-
cussed in Liu et al. (2020), a correction factor (0.9 to
1.3) appears to be necessary to account for the vari-
ation in BC particle sizes and refractive indices; conse-
quently, MACgpg ranges from 2.75 to 3.98m”> g ' in
our analyses. At 550 nm, we calculate MACrpg rang-
ing from 4.4 to 6.3m” g '. These results are 29 + 13%
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lower than the most widely cited MACpc value of
7.5m> g~ ' at 550nm (Bond and Bergstrom 2006),
suggesting an uncertainty in either the RDG-FA
model itself or the properties of BC particle used in
the approximation. Probing a range of m within any
theoretical model is outside the scope of our analysis.

Within Mie theory, we examined two bounding
cases for spherical BC particles: a purely external mix-
ture and a core-shell internal mixture. For both mix-
ing states, the general form to calculate MACg( is:

Baps (Mie theory)
massgc (SP2)

oo Td?

Jo~ =" n(dp) Qabs d(dy)

_ b
B massgc (SP2) 3)

MAC;. =

where massgc is the BC mass concentration (here,
taken from a Droplet Measurement Technologies
Single Particle Soot Photometer, or SP2), Qs is the
calculated dimensionless absorption efficiency of a
single BC particle, d, is the diameter of particle
detected by the SP2 (15 to 550 nm, with a bin size of
5nm), and n(d,) is the SP2-derived size distribution.
We selected this lower bound because the raw data
from the DOE ARM Data Discovery website include
SP2 number distributions spanning this range in
5nm bins.

The calculations of B,,s and Qs were performed
using the PyMieScatt library in Python (Sumlin,
Heinson, and Chakrabarty 2018). To calculate B,
with an assumption of externally mixed particles, we
applied the function of Mie SD in the library.
Specifically, the program first computes Qs for each
single, homogeneous particle with a refractive index
of 1.95+0.79i (the same value as in the RDG-FA
model) at a wavelength of 870nm, then integrates
numerically over binned SP2 size distribution data to
obtain B,y

For the case of internally mixed particles, we fol-
lowed a two-step approach. In the first step, we used
the function of MieQCoreShell from Sumlin, Heinson,
and Chakrabarty (2018) to derive Qs where we
assumed a refractive index of 1.5+ le-4i (i.e.,, non-
absorbing) for the coating materials (Saliba et al.
2016; Schnaiter et al. 2005) and a refractive index of
1.954+0.79i for the BC core. We used the same
refractive indices as those chosen to obtain the empir-
ical model as described in Chakrabarty and Heinson
(2018), so we can compare the predicted MACpc
between the methods. To determine the shell diam-
eter, we followed Saliba et al. (2016), who assumed
that the coating is solely attributed to the difference

between Scanning Mobility Particle Sizer (SMPS) and
SP2 particle size distributions and the shell diameter
(dp.shen (i) is a function of core diameter (d,sps (i)
and the volume ratio of the shell and the BC core:

volumeg, 1/3
dp.shen (i) = dpspy (i) x <7h”> (4)

volumepc
With

Equation (4) becomes

dpshen (i) = < Prc

pcouting

the measurements of SMPS and SP2,

masscoating

-+ 1) " e ()

(5)

masspc (SP2

where mass qating is defined as:
MASScoating = Peoating (VOlUmMesyps — volumesp;) — (6)

with volumesyps = 3§ dy syps 1(dp) and
volumesp; = masspc (SP2)/ppc. The values of poating
and ppc were assumed to be 1.2 and 1.8g cm
respectively, as in Saliba et al. (2016).

In the second step of the calculation, Q,,s was inte-
grated using the scipy.integrate.trapz function in the
Scipy library (Varoquaux et al. 2015) to obtain B,
(the numerator of Equation (3)). Hereafter, we use the
term MACyicexr and MACygein: to represent the
MACgc derived for external and internal mixing
states, respectively.

Empirical modeling

We only considered the empirical model that was
developed by Chakrabarty and Heinson (2018),
because the inputs to this model are available within
our data. This model was developed for BC with dif-
ferent internally mixed morphologies (i.e., bare, partly
coated, and embedded aggregates), and this diversity
suggests applicability to both fresh and aged BC par-
ticles in the atmosphere. Following the power-law
scaling relation defined by this model, we calculated
empirical MACpc as expressed in Equation (7):

3.6 <masstoml(SMPS)> 1/3 )

MACem ircal = 5
pircal =75 masspc(SP2)

where 1 is the wavelength in um and massy (SMPS)
is the inferred mass concentration of particles from an
SMPS.  Therefore, for pure BC  particles
(massyora(SMPS)/massgc(SP2) = 1), this model pre-
dicts MACpc = 4.14m* gf1 at 870nm, and when
masS;oral(SMPS)/masspc(SP2) > 1, the model predicts
that light absorption will be enhanced.
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Figure 2. Locations of the investigated DOE ARM campaigns (panel (a)) and wind roses (panels (b—d)) illustrating the wind direc-
tions during the campaigns. In panels (b-d), different color bands represent different range of wind speeds and the length of
each segment represents the relative frequency of wind from that direction. See the online version for a colorized figure.

Datasets used for model evaluation

The datasets studied in this work are from three US
DOE ARM field campaigns: GOAMAZON, LASIC,
and CACTI. As shown in Figure 2a, all campaigns
took place in the southern hemisphere: GOAMAZON
occurred downwind of the city of Manaus in Brazil
(June-July 2014); LASIC was conducted on Ascension
Island in the South Atlantic (January 2017); and
CACTI was sited in a mountainous area of Argentina
(December 2018). Wind analysis of the sites (Figures
2b-d) reveals that the wind direction varied widely at
GOAMAZON but was only from southeast at LASIC.
The consistency of wind patterns at LASIC is likely
related to the prevailing trade winds near the equator.
At CACTI, the winds from north and southeast had
relatively higher frequencies. Among the three sites,
LASIC had the greatest wind speeds (5.9+1.1m s,
followed by CACTI (3.1+x1.8m s Y and
GOAMAZON (12+0.9m s ). These wind patterns
allow us to infer how the variability of aerosol sources

affects the performance of our model in differ-
ent locations.

We also probed the emission sources using back-
ward trajectories analysis from NOAA’s HYSPLIT4
model (Stein et al. 2015). During LASIC (Figure Sla),
the trajectories originated in the South Atlantic Ocean
to Ascension Island from a southeasterly direction,
which is consistent with the wind rose plot in Figure
2c. During CACTI, the air mass trajectories’ origins
differed in time and space. In the first week of the
study (Figure S1b), the air mass trajectories origin was
from the South Pacific Ocean, likely transporting mar-
ine aerosols (e.g., sea spray) to the area of study. Later
in the study (Figure Slc), there appears to be a larger
contribution of terrestrial aerosols when the trajectories
originated from northeast. Interestingly, although the
backward trajectories at GOAMAZON are mostly from
southeast, the pathway of aerosols between 06/24/14
and 07/24/14 (Figure S2b) would potentially bring
many marine aerosols to the study area. However, in
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the other days, trajectories mainly originated from over
land than over the ocean (Figures S2a and c).

We selected these campaigns for our analysis for the
following reasons. First, these studies used similar instru-
mentation (both among each other and compared to the
TCAP training data for our SVM model) to characterize
the aerosols, which may constrain the influence of meas-
urement uncertainties in model performance evaluation.
For example, all studies utilized SP2 for BC mass, filter-
based absorption photometers for multi-wavelength B,
nephelometers for multi-wavelength B, and at least an
SMPS for particle size distributions. Even though the fil-
ter-based instruments may be prone to biases (even after
the application of correction algorithms), we assume that
these biases will be similar across the campaigns. Second,
these campaigns were conducted at different observa-
tional sites representing different atmospheric environ-
ments than TCAP, which occurred near Cape Cod,
Massachusetts, USA (July-August 2012). The variation
in aerosol sources and properties among these three add-
itional campaigns allows us to probe the generalizability
of the models. Third, a relatively large number of time-
series observations were reported for these campaigns,
which is necessary to capture the temporal variations in
MAC at the sites.

Results and discussion
Overview of the aerosol properties

We summarize relevant observations from the three
campaigns in Table 1. We report the results using 4-h

averages, in order to dampen both the temporal vari-
ability and measurement uncertainty within the data.
For all studies, the ambient BC mass concentration
was roughly 0.11pug m > yet with a relatively large
standard deviation during each campaign (nearly 70%;
see Table 1). Similarly, the observed B,y at 870 nm, as
corrected by the correction scheme reported in Bond,
Anderson, and Campbell (1999) (hereafter referred to
as B1999), was roughly 1 Mm ™' across the three cam-
paigns, although the temporal variability was greater
during both GOAMAZON and CACTI (roughly
60-70%) than during LASIC (roughly 40%). Given
that we are considering 4-h-averaged data, we expect
that this variability is driven more by temporal varia-
tions than measurement uncertainty. The application
of an alternative correction method for the filter-based
absorption measurements (Li, McMeeking, and May
(2020); hereafter, L2020) reduced the corrected B,
values by roughly a factor of two compared to B1999,
but the variability among the studies remains similar.
This comparison reinforces prior studies suggesting
that systematic biases exist among different correction
schemes for filter-based absorption photometers (Li,
McMeeking, and May 2020; Davies et al. 2019;
Saturno et al. 2017; Collaud Coen et al. 2010). This is
perhaps unsurprising, because these algorithms were
developed using different reference measures of By,
different aerosol types, and different input parameters;
for example, B1999 was developed using laboratory
aerosols and uses transmission through the filter (Tr)
and B, as inputs to the correction, while 12020 was

Table 1. Average (standard deviation) of major meteorological parameters and aerosol properties measured at the campaigns,
based on 4-h averages. MAC, B,ps, and SSA are reported for 870 nm.

Dataset GOAMAZON GOAMAZON (subset?) LASIC CACTI TCAP (training data)
Location (latitude and longitude) —3.21°, —60.70° —3.21°, —60.70° —7.97°, —14.35° —32.13°, —64.73° 42.03°, —70.05°
Collection period (MM/DD/YY) 06/15/14-07/31/14 Excluding 01/14/17-01/23/17 12/01/18-12/20/18  07/16/12-08/15/12
06/24/14-07/24/14
Number of data 225 81 60 120 583
Temperature (°C) 26.62 (2.90) 26.50 (2.93) 23.94 (1.14) 18.60 (4.47) 23.45 (2.90)
Relative humidity (%) 88 (11) 88 (11) 87 (6) 71 (17) 86 (12)
Wind direction (°) 174 (106) 186 (105) 119 (7) 139 (110) 199 (79)
Wind speed (m s™) 1.17 (0.88) 1.08 (0.79 5.94 (1.14) 3.07 (1.78) 3.69 (1.86)
MACneas (L2020, m? g) 6.49 (3.18) 3.53 (246 / 2.94 (1.03) 3.87 (1.92)
MACneas (B1999, m? g™) 13.89 (6.24) 6.94 (1.38 7.92 (0.71) 737 2.11) 7.81 (4.11)
B.ps (L2020, Mm™) 0.49 (0.35) 0.49 (0.30, / 0.31 (0.17) 0.32 (0.28)
Babs (1999, Mm™") 1.12 (0.78) 1.14 (0.74 0.97 (0.37) 0.80 (0.49) 0.80 (0.68)
AAE 1.33 (0.24) 1.35 (0.24 0.93 (0.06) 1.33 (0.30) 1.57 (0.66)
SAE 0.95 (0.21) 0.89 (0.23 0.64 (0.10) 1.17 (0.64) 1.38 (0.45)
SSA (L2020) 0.96 (0.02) 0.96 (0.02 / 0.96 (0.03) 0.97 (0.02)
SSA (B1999) 0.93 (0.03) 0.93 (0.02 0.94 (0.03) 0.92 (0.02) 0.93 (0.04)
SP2 Mgc (ug m'3) 0.10 (0.07) 0.14 (0.08 0.12 (0.05) 0.11 (0.08) 0.10 (0.07)
shell mass/BC core mass® 29.1 (17.2) 16.0 (9.0) 1.5 (4.5) 24.1 (23.0) -
SP2 Dppedian (NM) 97 (4) 98 (5) 155 (4) 86 (5) -
SMPS Dpmedian (M) 50 (11) 49 (11) 119 (16) 56 (24) 68 (20)

*The subset of GOAMAZON excludes the observations from 6/24/2014 to 7/24/2014 when MACg values showed elevated levels (Figure 4a). The substan-
tial increase in MACgc values may be associated with the absorption enhancement of BC by mixing with organic and inorganic coatings or the presence

of larger absorbing aerosols.
bShell masses are estimated using Equation (4).
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Figure 3. Time series (MM/DD/YYYY, based on 4-h averages) of BC number size distribution overlapped with the mass concentra-
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55nm (the other two panels start at 15nm), based on the data provided within the DOE ARM Data Discovery website. The right
axis of B,y is scaled differently in the three panels. See the online version for a colorized figure.

developed using ambient aerosols and uses not only
Tr and B, but also SSA and AAE as inputs.

Nevertheless, we use these measurements of BC
mass and B,,, (B1999 correction) to calculate the
measured values of MAC (MAC,c.s) at 870 nm, with
average values ranging from ~7.5m”> g~ (LASIC and
CACTI) to 13.9m> g ' (GOAMAZON). However,
using the L2020 correction reduces the MAC,;,e,s val-
ues to 6.5m> g~ ' for GOAMAZON and 3m” g~ for
CACTI; applying the L2020 correction to LASIC was
not possible, because neither raw transmittance nor
attenuation recorded by the filter-based absorption
photometer was available on the DOE ARM Data
Discovery site for that campaign. In the following sec-
tions, we use B1999 to obtain the results of MAC, a6
AAE, and SSA, unless otherwise specified. Similarly,
we used the SVM model tailored for the input varia-
bles of B1999-corrected B,,, to derive MACgym.
Finally, we note that the mean of a ratio is not neces-
sarily equal to the ratio of the mean values of two dis-
tributions, which is why the mean MAC values in
Table 1 differ from B, divided by Mpc.

Figure 3 illustrates the time series of BC particle
number distributions as a function of BC core diam-
eter (left y axis) measured by the SP2. Comparing the

number distributions between the sites, we observe
that GOAMAZON and CACTI are dominated by BC
particles between 55 and 200 nm, and CACTI appears
to have more large BC particles (i.e., >250nm) than
GOAMAZON. At the LASIC site, the number concen-
tration of BC particles is smaller than that from the
other two campaigns, and the particles of 100-200 nm
constituted the major component of the total BC con-
centrations. The relatively small variation in the BC
size distribution at LASIC may be explained by the
small changing of wind direction at the site
(Figure 2c).

In each panel of Figure 3, the black and red curves
present the temporal changes in BC mass concentra-
tion and B, at 870 nm, respectively. Interestingly, we
note that from 6/24/2014 to 7/24/2014 during the
GOAMAZON campaign, SP2 detected fewer BC par-
ticles smaller than 200nm compared to the other
days, resulting in roughly 50% lower mass concentra-
tions of BC particles. However, the B,,; measurements
during this period tended to be similar or slightly
greater than the other times. This abnormal period
leads to an elevated value of MAC,,.,s in Figure 4a.
Excluding this window, MAC,.,s at 870nm decreases
from 13.89 to 6.94m”> g~ ' (B1999) and from 6.49 to
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sion for a colorized figure.

3.53 m? gf1 (L2020). We discuss this further in the
section “BC coating and its influence on model accu-
racy.” During the LASIC and CACTI campaigns, the
measured BC mass and B, exhibited a similar pat-
tern over time, resulting in the averaged MACpc of
7.92 and 7.37m’> g ' (B1999), respectively. We
observed a relatively small temporal variation in
MACgc during LASIC (roughly 10%), presumably
because the wind direction and aerosol sources were
very consistent (Figure 2c and Figure Sla).

Variability of MAC obtained by different methods

We next compare time series of MACgyy to time ser-
ies of MAC derived from observations (i.e., MACeas)
using B1999 for GOAMAZON (Figure 4a), LASIC
(Figure 4b), and CACTI (Figure 4c). Generally, our
machine learning model performs well. With the
exception of the period within GOAMAZON dis-
cussed previously and for some of the periods within
CACTI, MACsyy agrees with MAC,,.,s within the
model’s uncertainty (shaded region in Figure 4).
Moreover, the SVM model generally captures the tem-
poral variability in MAC,.,s (ranging from 10% to

70%, depending on the campaign); temporal variations
cannot be captured by the standard assumption of
roughly 4.5m?® g~' at 870 nm. The reduced perform-
ance of the SVM model during CACTI is not surpris-
ing considering the variability of wind direction and
likely contribution of different sources to BC particles.
For example, wind erosion of dust due to local con-
vective storms (Schumacher et al. 2021) and the
resulting large airborne particles (SAE < 0.5) may
partially explain the degradation of the SVM model,
as we discuss in May and Li (2022); transport of min-
eral dust or sea spray aerosols to the observation site
during GOAMAZON may also be a plausible explan-
ation for poor agreement during the 6/24/2014 to 7/
24/2014 period.

We expand upon these comparisons in Figure 5,
which presents box-and-whisker plots of MAC, s
(using both B1999 and 12020, where possible) as well
as our predictions: MACgsynv, MACrpg, MACuic exts
MACie,ints and MACeppirica for all three campaigns.
GOAMAZON results include the full dataset (Figure
5a) as well as the subset discussed previously (Figure
5b). We also provide the “standard” MACpc at
870 nm based on Bond and Bergstrom (2006) inferred
using AAEpc = 1, that is, 4.74 m? g_1 (dashed
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horizontal lines). The predicted MACpc values from
different models are not consistent. For example, the
empirical model always produces the highest predic-
tions (MACcmpirical)> leading to roughly 30% over-pre-
diction compared to MAC,,,.,s in Figures 5b-d, which
suggests that some BC particles may not be internally
mixed. Conversely, Mie theory with an assumption of
external mixing (MACyyieext) results in the lowest val-
ues: roughly 2m” g ' for all datasets. Hence,
MACyieint Values are greater than MACyyie it by fac-
tors up to 2, resulting in good agreement compared to
the “standard” MACgc for all three campaigns. As
described above, the raw modeled MACypg was
adjusted by a factor of 0.9 to 1.3 as recommended in
Liu et al. (2020) to account for uncertainties. With the
exception of the full GOAMAZON dataset (which is
arguably bimodal with central values around 5m” g~'
and 15m? g, as in Figure 4a), Figure 5 suggests that
the standard assumption cannot represent any of these
data.

We quantify the performance of each method for
estimating MACgc in Table 2 by calculating the dif-
ference between the mean predicted value and
MAC ,cqs as well as a f-test comparing the two means.
Based on this analysis, our SVM model performs well;
with the exception of the full GOAMAZON dataset,
the difference between the mean values of MACgyy
and MAC,,,s are generally small and not statistically
significant. Conversely, the performance of the other
models is variable across sites. For example, the RDG-

Table 2. The differences between the means of the predicted
MACgc values and MACeas. The underlined and italicized val-
ues in the table indicate t-tests yielding p-value > 0.05 (i.e.,
no statistical significance  between prediction and
observation).

SVM RDG  Mie.ext Mie.int Empirical

GOAMAZON (full; L2020) —-292 -3.01 -—-495 -268 837
GOAMAZON (full; B1999) -719 —-11.17 —1239 —-10.12 09
GOAMAZON (subset; L2020)  0.26 0.14 —1.62 035 857

GOAMAZON (subset; B1999) -0.30 —387 —554 —3.57 466
LASIC (B1999) 0003 —465 —564 —315 193
CACTI (L2020) 034 018 -028 098 795
CACTI (B1999) 023 391 442 -292 395

FA approximation (MACrpg) and core-shell Mie the-
ory (MACuieint) generally agree with GOAMAZON
subset corrected by L2020 in Figure 5b and CACTI in
Figure 5d, but they under-predict MAC,;,e,s for LASIC
(Figure 5c). Notably, the variability of MAC,es
observed during the three campaigns (Table 1 and
Figure 4) cannot be captured by the RDG-FA theory,
because it does not take into account the temporal
variability, even with the simple adjustment that we
have applied. Similarly, the Mie theory models and
the empirical model rely on the BC mass measured by
the SP2, so they are not applicable for the locations
without the deployment of an SP2; the lack of an SP2
appears to be common in many long-term observa-
tional sites (e.g., the US DOE ARM fixed-location
observatories and many sites within the US National
Oceanic and Atmospheric Administration Global
Monitoring Laboratory Federated Aerosol Network).
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On the other hand, our model is built on real-time
measurements of aerosols common to these sites and
does not appear to be hindered by the fact that it
does not explicitly represent the underlying physics of
aerosol light absorption (e.g., it is agnostic to aerosol
mixing state). Thus, it has the potential to be general-
izable across different atmospheric environments.

The variability caused by different correction algo-
rithms applied to B, cannot be ignored when deriv-
ing MACc.s. As a result, an efficient MACpc
prediction model should take into account the uncer-
tainty of B,,s and adjust its parameters. As seen in
Figure 5, only the SVM model can yield consistent
agreement with MAC,.,s when changing from B1999
to L2020, especially for the GOAMAZON subset
(panel (b)) and CACTI (panel (d)). Interestingly, the
RDG and Mie models tend to agree better with the
MAC 05 using L2020, but the empirical model agrees
better with MACe,s using B1999. In Li, McMeeking,
and May (2020), we developed our algorithm for fil-
ter-based photometer corrections using the B, obser-
vations from a photoacoustic instrument, so this
version of the SVM model will be also suitable for
photoacoustic measurements. Similar to the lower
MAC a5 values observed when applying the 12020
correction for photoacoustic measurements, Wei et al.
(2020) assessed the MACg values derived by different
techniques in the literature and found that photoa-
coustic spectroscopy data exhibit a 20% lower MACgc
than filter-based studies.

BC coating and its influence on model accuracy

As we have stated previously, the enhancement of
light absorption due to a lensing effect could bias the
MACs results, because the coating layer can act as a
focusing lens to enhance the incoming light to the BC
cores. Thus, it is important to investigate how the
proposed MACgc models perform when BC particles
are coated by other materials at various thicknesses.
For this purpose, we evaluate the relationship between
BC coating state and the accuracy of different models
in this section, with the inherent assumption that all
BC is internally mixed with other aerosol species.
Using the measurements from both SP2 and SMPS
during the three campaigns, we calculated E,, as the
ratio of B, (core-shell) to B, (uncoated), both
obtained from the appropriate Mie theory calculation.
To estimate the ensemble-average relative coating
thickness, we use the term Ratio..s (Cappa et al.
2019; Wu et al. 2018; Liu et al. 2015), which is defined
as the coating-to-core mass ratio of BC-containing
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Figure 6. Variation in E,ps (870 Nnm) as a function of Rationass.
The lines (estimated by exponential functions) are used only to
guide the eye. GOAMAZON (exclusive) refers to the subset of
the data discussed elsewhere. See the online version for a
colorized figure.

particles (i.e., masscoaiing in Equation (3) divided by
SP2-derived BC mass). It is worth noting that the esti-
mated E,,, from this work may differ from the meas-
ured E,,, in literature (using a thermodenuder to
remove the c