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Estimating mass-absorption cross-section of ambient black carbon aerosols:
Theoretical, empirical, and machine learning models

Hanyang Lia,b and Andrew A. Maya

aDepartment of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, Ohio, USA; bDepartment of
Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, California, USA

ABSTRACT
The mass-absorption cross-section of black carbon (MACBC) is an essential parameter to link
the atmospheric concentration of black carbon (BC) with its radiative forcing. When a direct
calculation of MACBC based on observations of aerosol light absorption and BC mass con-
centration is impossible, we rely on modeling and simulations to estimate MACBC, but cur-
rently, there is no consensus model that can be relied on for accurate predictions across all
atmospheric environments when BC particles have different coating thicknesses. Here, we
applied five MACBC prediction models (including three light scattering theories, an empirical
model based on observations of particle mass concentrations, and a machine learning
model developed in our previous work) to aerosols from three Department of Energy (DOE)
Atmospheric Radiation Measurement (ARM) field campaigns. While many studies have found
that increasing the complexity of the models helps to constrain biases of the estimated
MACBC, our effort is to evaluate the models based on the criteria of simplicity and accuracy.
We find that our machine learning model (support vector machine for regression, SVM) gen-
erally performs well across all DOE ARM field campaign data, while the accuracy of core-
shell Mie theory depends on the bias correction algorithm applied to filter-based light
absorption data. Generally, the empirical model for internally mixed particles that we consid-
ered tends to over-predict MACBC, while Mie theory for externally mixed particles tends to
under-predict MACBC. An examination of the influence of coating material on BC cores sug-
gests that the performance of our current SVM model is degraded when the BC is thickly
coated (e.g., it has undergone aging and mixing with other materials in the atmosphere).
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Introduction

Black carbon (BC) has an important and complex, yet
uncertain, role in the climate system (Bond et al.
2013). Multiple approaches exist to quantify atmos-
pheric BC, but these are operationally defined (Lack
et al. 2014; Petzold et al. 2013). Herein, we focus on
aerosol light absorption measurements, which typically
either quantify light attenuation through a filter or
utilize a photoacoustic technique. These instruments
provide an aerosol light absorption coefficient (Babs)
at the wavelength(s) of light at which the measure-
ment occurs. Measurements of Babs (and absorption
aerosol optical depth) are often used to evaluate pre-
dictions of aerosol radiative forcing in chemistry-cli-
mate models (e.g., Gliß et al. 2021). However, the
challenge is that BC emissions within these models
are mass-based (e.g., Tg year�1, as in Bond et al.

[2013] and McDuffie et al. [2020]), so a conversion
between Babs and BC mass concentration (MBC) is
required for model evaluation. Often, this conversion
factor is referred to as the mass-absorption cross-sec-
tion of BC (MACBC), that is, Babs ¼ MACBC �MBC:

There are several approaches that one can follow to
define a value of MACBC. With observations of both
Babs and MBC, one can derive observed values of
MACBC at a given wavelength of light (k) through time
and/or space (Yuan et al. 2021; Cho et al. 2019; Cross
et al. 2010). In the absence of experimental observa-
tions, MACBC has traditionally been assumed to be
7.5 ± 1.2m2 g�1 at 550 nm based on the classical review
of mostly laboratory studies by Bond and Bergstrom
(2006); in a separate review of studies occurring after
2006, Liu et al. (2020) obtained a similar value
(8.0 ± 0.7m2 g�1 at 550 nm). To extend MACBC to
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different wavelengths, a power-law function is often
used:

MACBC kð Þ ¼ MACBC 550 nmð Þ � k
550 nm

� ��AAEBC

(1)

where AAEBC is the absorption Ångstr€om exponent
for BC. The value of AAEBC is frequently assumed to
be 1 (Lack and Langridge 2013; Bergstrom, Russell,
and Hignett 2002), although this value varies in the
literature depending on the adopted method. For
example, Bahadur et al. (2012) obtained a value of 0.6
from satellite data, while Gyawali et al. (2017) used
core-shell Mie theory to infer a value of 1.7. However,
many analyses of field data that provide more direct
estimates of AAEBC suggest that this value falls
between roughly 0.9 and 1.5 (e.g., Li and May 2020a;
Saturno et al. 2017; Cappa et al. 2016; Backman
et al. 2014).

In this work, we focus on 870 nm, specifically,
because it is the operating wavelength of one model of
the Droplet Measurement Technologies Photoacoustic
Extinctiometer, which we have used in prior work (Li,
McMeeking, and May 2020). Thus, if we propagate
these uncertainties in both MACBC and AAEBC
through Equation (1) to predict MACBC at 870 nm by
assuming that MACBC at 550 nm is represented by a
normal distribution (7.5 ± 1.2m2 g�1) and AAEBC is
represented by a linear distribution bounded by 0.6
and 1.7, we obtain a value of 4.46± 0.98m2 g�1; the
assumption of a normal distribution for AAEBC
(1.1 ± 0.3) yields similar values of 4.56± 0.94m2 g�1.
Moreover, BC likely dominates light absorption at
870 nm. Tar-like brown carbon has a MAC of roughly
1m2 g�1 (Corbin et al. 2019), while mineral dust has a
MAC of roughly 0.05m2 g�1 (Caponi et al. 2017), so
large quantities of these other absorbing aerosols (rela-
tive to BC) are required to influence MACBC.

However, experimentally derived values of MACBC

from field observations do not always agree with these
“community standards” of MACBC and AAEBC.
Specifically, for ambient aerosols, MACBC has been
reported within the range of 2.3–15m2 g�1 at 550 nm
(Mbengue et al. 2021; Ohata et al. 2021; Yuan et al.
2021; Cho et al. 2019; Gyawali et al. 2017; Zanatta
et al. 2016; Nordmann et al. 2013; Kondo et al. 2011;
Moosm€uller et al. 1998), and we previously reported
values between roughly 3 and 4m2 g�1 at 870 nm (Li
and May 2020a). There is similar variable agreement
among laboratory studies of torch-generated BC par-
ticles (e.g., Cross et al. 2010; Scarnato et al. 2013;
Forestieri et al. 2018).

Variations in MACBC may exist for a myriad of rea-
sons. If the BC is internally mixed with other aerosol
components, its light absorption may be enhanced
(Yuan et al. 2021; Conrad and Johnson 2019; Lack and
Cappa 2010; Bond, Habib, and Bergstrom 2006;
Jacobson 2001), but these mixtures are non-homoge-
neous (Fierce et al. 2016, 2020; Zhang et al. 2017;
Moteki, Kondo, and Adachi 2014; Adachi, Chung, and
Buseck 2010). Values of absorption enhancement (Eabs)
can be determined by measuring MAC before and after
removal of particles’ coating in a thermodenuder (Lack
et al. 2014; Cappa et al. 2012; Knox et al. 2009), and
previous studies observed a broad range Eabs (1.06–4.5)
due to different experimental conditions (Wei et al.
2020). Similarly, the morphology (e.g., density, shape,
and size distribution) of the BC particles influences
their light absorption (Wu et al. 2018; Zhang et al.
2008). During atmospheric transport of BC, chemical
aging may alter MACBC (Xu et al. 2018; Subramanian
et al. 2010; Zaveri et al. 2010; Knox et al. 2009), likely
due to transformations to the BC mixing state and/or
its morphology. Electronic microscopy can provide the
accurate measurement of BC aggregates and their mix-
ing with other materials (Wang et al. 2021), but it
remains difficult to capture the change of BC morph-
ology across the whole aging process. Consequently,
some studies have proposed the use of location-specific
MACBC (Srivastava et al. 2021; Ram and Sarin 2009).

When constrained by observations, a number of
theoretical approaches have the potential to etimate
MACBC at a given incident wavelength of light. Core-
shell Mie theory serves as one approach for estimating
optical properties of internally mixed BC through the
assumption of spherical BC cores that are uniformly
coated by organic and inorganic components
(Jacobson 2000; Bohren and Huffman 1983). Likewise,
Mie theory can be applied to external mixtures of BC
and other components (Li et al. 2019; Lesins, Chylek,
and Lohmann 2002). Another commonly used theor-
etical approach is the Rayleigh-Debye-Gans approxi-
mation for fractal aggregates (RDG-FA) (Conrad and
Johnson 2019; Sorensen 2001; Dobbins and Megaridis
1991). In the RDG-FA approach, the total absorption
of an aggregate is the sum of absorption of individual
BC spherules. For any theoretical approach, its accur-
acy is sensitive to the required input parameters, such
as BC refractive index, particle morphology, and par-
ticle mixing state, all of which are difficult and/or
labor-intensive to measure (Liu et al. 2020; Forestieri
et al. 2018; Zanatta et al. 2018; Garc�ıa Fern�andez,
Picaud, and Devel 2015; Lack and Cappa 2010).
However, even if these parameters can be measured
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accurately, the theoretical formulations may not truly
capture all of the underlying physics (Bond and
Bergstrom 2006).

To address potential challenges related to an
incomplete understanding of the underlying physics,
several prior studies have developed empirical models
describing the relationship between MACBC and other
observed aerosol-related parameters. For example,
based on the observational relationship between the
MACBC of flare-generated BC and key flare parame-
ters (e.g., flare temperature, volumetric flow rate, and
carbon-hydrogen ratio), Conrad and Johnson (2019)
modeled MACBC at 550 nm as a power-law equation
(cf., their Equation 5). Similarly, Chakrabarty and
Heinson (2018) examined the relationship between
MACBC and the ratio of total particle mass to BC
mass for both observational and simulated data of BC
particles, and they proposed an empirical model (cf.,
discussion of their Figure 2; our Equation (6) below).
Likewise, to improve the parametrization of BC
absorption in climate models, Wu et al. (2018) sug-
gested a correction of Eabs using an exponential func-
tion (cf., their Figure S13). Overall, these empirical
models provide straightforward and computationally
inexpensive methods toward improving the prediction
accuracy of BC radiative forcing. However, building
these models requires the assumption of a functional
relationship between the independent and dependent
variables, which is often subjective unless there is an
underlying physical model. Furthermore, since the
empirical models are typically simple in their struc-
ture, their accuracy may degrade when the experimen-
tal conditions are different from the one where the
model is generated.

To mitigate uncertainties in MACBC related to
assumptions related to the appropriate theoretical for-
mulation and aerosol properties, we previously applied
different data-driven approaches to predict MACBC at
870 nm for ambient and biomass burning aerosols (Li
and May 2020a). We differentiate this approach from
the aforementioned empirical models because our
data mining method seeks to discover unexpected pat-
terns and identify hidden relationships in the datasets
with no pre-defined mathematical model. As
described in Li and May (2020a), our models use tem-
porally varying aerosol properties, namely observa-
tions of Babs, aerosol light scattering coefficients
(Bscat), and number and volume size distributions, as
input variables to the models in the prediction of time
series of MACBC. The models were constructed using
ambient aerosols from the US Department of Energy
(DOE) Atmospheric Radiation Measurement (ARM)

Two-Column Aerosol Project (TCAP) and then
applied to two independent validation datasets: the
DOE ARM Cloud, Aerosol, and Complex Terrain
Interactions (CACTI) project and the 2016 FireLab
component of the Fire Influence on Regional to
Global Environments and Air Quality (FIREX-AQ)
campaign, which was sponsored by the US National
Oceanic and Atmospheric Administration. Based on
the model performance metrics in Li and May (2020a)
and an extended uncertainty evaluation in May and Li
(2022), we put forth support vector machine (SVM)
for regression as the recommended technique for use.

In this work, we present an expanded evaluation of
our SVM model on the prediction of MACBC for
ambient aerosols from different atmospheric environ-
ments around the world, including CACTI, the DOE
ARM Observations and Modeling of the Green Ocean
Amazon (GOAMAZON) project, and the DOE ARM
Layered Atlantic Smoke Interactions with Clouds
(LASIC) project. Furthermore, we systematically com-
pare the MACBC estimated by our model and existing
theoretical and empirical approaches, including some
that account for the enhancement to aerosol light
absorption that may occur when BC is internally
mixed, in order to compare our machine-learning
model to established approaches and to assess the
generalizability of our model.

Methodology

Within this section, we describe three different
approaches to predict MACBC, namely SVM, theoretical,
and empirical models, along with a description of the
observational data that were used for model evaluation.

SVM modeling

We provide a detailed discussion of our machine
learning model in Li and May (2020a). Briefly, SVM
maps independent variables into a higher-dimensional
space where linear regression is performed (Smola
and Sch€olkopf 1998; Drucker et al. 1997; Cortes and
Vapnik 1995). Fundamentally, the SVM approach
selects a subset of observations from the training data-
set as “support vectors” to define the margins of
hyperplanes for the model (and to discard “unwanted”
data samples), which makes the model robust to data
noise and applicable to datasets with substitution of
input variables. SVM can handle non-linear problems
through the use of non-linear kernels, and it is less
prone to over-fitting than other regression techniques.
Our selection of the hyperplane and kernel function
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can be found in the supplementary materials of Li
and May (2020a). However, SVM is not without limi-
tation; for example, it is more computationally expen-
sive than linear regression, and it may be difficult to
interpret the derived regression model. In addition,
SVM can have large prediction errors when extrapo-
lating beyond the training parameter space; in other
words, the extrapolation of SVM to unseen data
remains uncertain.

We designed our SVM model with the intent to
utilize aerosol measurements common to many obser-
vational sites in its prediction of MACBC; moreover,
we selected the input variables to emulate light scat-
tering theories. For example, because Mie theory
requires particle size as an input, we incorporated par-
ticle number distributions and particle volume distri-
butions as candidate variables for our models.
Similarly, we considered observations of Babs and Bscat
as proxies for aerosol composition, because they are
widely measured and their spectral dependencies (i.e.,
AAE and the scattering Ångstr€om exponent or SAE)
have been used to categorize absorbing aerosols by
type (Cappa et al. 2016; Cazorla et al. 2013).

Prior to input to the SVM model, the aerosol meas-
urements are pre-processed to apportion the particle
number and volume size distributions into a few size
bins; to apply correction factors to filter-based absorp-
tion photometer data using either Bond, Anderson,
and Campbell (1999) or Li, McMeeking, and May
(2020); and to convert Babs and Bscat to “standard”

wavelengths that are used in filter-based absorption
photometers common to many long-term ground sites
(467, 528, and 652 nm in our model). These pre-proc-
essing steps have been detailed described in Li and
May (2020a) and are available in an online repository
(Li and May 2020b). We ultimately input 20 candidate
variables into the model to determine MACBC at
870 nm (referred to as MACSVM in Figure 1).

Theoretical modeling

We considered two commonly used theoretical mod-
els: the RDG-FA approximation and Mie theory. In
general, the RDG-FA approximation for MACBC can
be expressed as:

MACRDG kð Þ ¼ 6p
q

� Eðm kð ÞÞ
k

(2)

where Eðm kð Þ ¼ Imag m2�1
m2þ2

� �
, q is the material dens-

ity of BC (1.8 g cm�3), m is the complex refractive
index of BC, and k is the wavelength of light (870 nm
in the present work). When using m¼ 1.95þ 0.79i as
recommended by Bond and Bergstrom (2006),
MACRDG is 3.06m2 g�1 at 870 nm. However, as dis-
cussed in Liu et al. (2020), a correction factor (0.9 to
1.3) appears to be necessary to account for the vari-
ation in BC particle sizes and refractive indices; conse-
quently, MACRDG ranges from 2.75 to 3.98m2 g�1 in
our analyses. At 550 nm, we calculate MACRDG rang-
ing from 4.4 to 6.3m2 g�1. These results are 29 ± 13%

Figure 1. Schematic flow chart showing the flow for estimating MACSVM at 870 nm. N1, N2, and N3 represent the aerosol number
concentration falling within the size class bins (<50 nm, 50–200 nm, and >200 nm), while V1, V2, and V3 represent the aerosol vol-
ume concentration within the size class bins (<1000 nm, 1000–2500nm, and >2500 nm). The sum of the Ni and Vi values equals
the total aerosol number or volume concentrations (Ntotal and Vtotal). Fj1, Fj2, and Fj3 represent the fraction of total aerosol concen-
tration falling within each class for either number (FNi) or volume (FVi), and by definition, the sum of both FNi and FVi equals 1.
See the online version for a colorized figure.
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lower than the most widely cited MACBC value of
7.5m2 g�1 at 550 nm (Bond and Bergstrom 2006),
suggesting an uncertainty in either the RDG-FA
model itself or the properties of BC particle used in
the approximation. Probing a range of m within any
theoretical model is outside the scope of our analysis.

Within Mie theory, we examined two bounding
cases for spherical BC particles: a purely external mix-
ture and a core-shell internal mixture. For both mix-
ing states, the general form to calculate MACBC is:

MACMie ¼ Babs ðMie theoryÞ
massBC ðSP2Þ

¼
Ð1
0

pd2p
4 n dp

� �
Qabs d dp

� �
massBC ðSP2Þ (3)

where massBC is the BC mass concentration (here,
taken from a Droplet Measurement Technologies
Single Particle Soot Photometer, or SP2), Qabs is the
calculated dimensionless absorption efficiency of a
single BC particle, dp is the diameter of particle
detected by the SP2 (15 to 550 nm, with a bin size of
5 nm), and n(dp) is the SP2-derived size distribution.
We selected this lower bound because the raw data
from the DOE ARM Data Discovery website include
SP2 number distributions spanning this range in
5 nm bins.

The calculations of Babs and Qabs were performed
using the PyMieScatt library in Python (Sumlin,
Heinson, and Chakrabarty 2018). To calculate Babs
with an assumption of externally mixed particles, we
applied the function of Mie_SD in the library.
Specifically, the program first computes Qabs for each
single, homogeneous particle with a refractive index
of 1.95þ 0.79i (the same value as in the RDG-FA
model) at a wavelength of 870 nm, then integrates
numerically over binned SP2 size distribution data to
obtain Babs.

For the case of internally mixed particles, we fol-
lowed a two-step approach. In the first step, we used
the function of MieQCoreShell from Sumlin, Heinson,
and Chakrabarty (2018) to derive Qabs, where we
assumed a refractive index of 1.5þ 1e-4i (i.e., non-
absorbing) for the coating materials (Saliba et al.
2016; Schnaiter et al. 2005) and a refractive index of
1.95þ 0.79i for the BC core. We used the same
refractive indices as those chosen to obtain the empir-
ical model as described in Chakrabarty and Heinson
(2018), so we can compare the predicted MACBC

between the methods. To determine the shell diam-
eter, we followed Saliba et al. (2016), who assumed
that the coating is solely attributed to the difference

between Scanning Mobility Particle Sizer (SMPS) and
SP2 particle size distributions and the shell diameter
(dp.shell (i)) is a function of core diameter (dp.SP2 (i))
and the volume ratio of the shell and the BC core:

dp:shell ið Þ ¼ dp:SP2 ið Þ � volumeshell
volumeBC

� �1=3

(4)

With the measurements of SMPS and SP2,
Equation (4) becomes

dp:shell ið Þ ¼ qBC
qcoating

masscoating
massBC ðSP2Þ þ 1

� �1=3
dp:SP2 ið Þ

(5)

where masscoating is defined as:

masscoating ¼ qcoating volumeSMPS � volumeSP2ð Þ (6)

with volumeSMPS ¼
P

p
6 d3p:SMPS n dp

� �
and

volumeSP2 ¼ massBC ðSP2Þ=qBC: The values of qcoating
and qBC were assumed to be 1.2 and 1.8 g cm�3,
respectively, as in Saliba et al. (2016).

In the second step of the calculation, Qabs was inte-
grated using the scipy.integrate.trapz function in the
Scipy library (Varoquaux et al. 2015) to obtain Babs
(the numerator of Equation (3)). Hereafter, we use the
term MACMie.ext and MACMie.int to represent the
MACBC derived for external and internal mixing
states, respectively.

Empirical modeling

We only considered the empirical model that was
developed by Chakrabarty and Heinson (2018),
because the inputs to this model are available within
our data. This model was developed for BC with dif-
ferent internally mixed morphologies (i.e., bare, partly
coated, and embedded aggregates), and this diversity
suggests applicability to both fresh and aged BC par-
ticles in the atmosphere. Following the power-law
scaling relation defined by this model, we calculated
empirical MACBC as expressed in Equation (7):

MACempircal ¼ 3:6
k

masstotalðSMPSÞ
massBCðSP2Þ

� �1=3

(7)

where k is the wavelength in lm and masstotal (SMPS)
is the inferred mass concentration of particles from an
SMPS. Therefore, for pure BC particles
(masstotal(SMPS)/massBC(SP2) ¼ 1), this model pre-
dicts MACBC ¼ 4.14m2 g�1 at 870 nm, and when
masstotal(SMPS)/massBC(SP2) > 1, the model predicts
that light absorption will be enhanced.
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Datasets used for model evaluation

The datasets studied in this work are from three US
DOE ARM field campaigns: GOAMAZON, LASIC,
and CACTI. As shown in Figure 2a, all campaigns
took place in the southern hemisphere: GOAMAZON
occurred downwind of the city of Manaus in Brazil
(June–July 2014); LASIC was conducted on Ascension
Island in the South Atlantic (January 2017); and
CACTI was sited in a mountainous area of Argentina
(December 2018). Wind analysis of the sites (Figures
2b–d) reveals that the wind direction varied widely at
GOAMAZON but was only from southeast at LASIC.
The consistency of wind patterns at LASIC is likely
related to the prevailing trade winds near the equator.
At CACTI, the winds from north and southeast had
relatively higher frequencies. Among the three sites,
LASIC had the greatest wind speeds (5.9 ± 1.1m s�1),
followed by CACTI (3.1 ± 1.8m s�1) and
GOAMAZON (1.2 ± 0.9m s�1). These wind patterns
allow us to infer how the variability of aerosol sources

affects the performance of our model in differ-
ent locations.

We also probed the emission sources using back-
ward trajectories analysis from NOAA’s HYSPLIT4
model (Stein et al. 2015). During LASIC (Figure S1a),
the trajectories originated in the South Atlantic Ocean
to Ascension Island from a southeasterly direction,
which is consistent with the wind rose plot in Figure
2c. During CACTI, the air mass trajectories’ origins
differed in time and space. In the first week of the
study (Figure S1b), the air mass trajectories origin was
from the South Pacific Ocean, likely transporting mar-
ine aerosols (e.g., sea spray) to the area of study. Later
in the study (Figure S1c), there appears to be a larger
contribution of terrestrial aerosols when the trajectories
originated from northeast. Interestingly, although the
backward trajectories at GOAMAZON are mostly from
southeast, the pathway of aerosols between 06/24/14
and 07/24/14 (Figure S2b) would potentially bring
many marine aerosols to the study area. However, in

Figure 2. Locations of the investigated DOE ARM campaigns (panel (a)) and wind roses (panels (b–d)) illustrating the wind direc-
tions during the campaigns. In panels (b–d), different color bands represent different range of wind speeds and the length of
each segment represents the relative frequency of wind from that direction. See the online version for a colorized figure.
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the other days, trajectories mainly originated from over
land than over the ocean (Figures S2a and c).

We selected these campaigns for our analysis for the
following reasons. First, these studies used similar instru-
mentation (both among each other and compared to the
TCAP training data for our SVM model) to characterize
the aerosols, which may constrain the influence of meas-
urement uncertainties in model performance evaluation.
For example, all studies utilized SP2 for BC mass, filter-
based absorption photometers for multi-wavelength Babs,
nephelometers for multi-wavelength Bscat, and at least an
SMPS for particle size distributions. Even though the fil-
ter-based instruments may be prone to biases (even after
the application of correction algorithms), we assume that
these biases will be similar across the campaigns. Second,
these campaigns were conducted at different observa-
tional sites representing different atmospheric environ-
ments than TCAP, which occurred near Cape Cod,
Massachusetts, USA (July–August 2012). The variation
in aerosol sources and properties among these three add-
itional campaigns allows us to probe the generalizability
of the models. Third, a relatively large number of time-
series observations were reported for these campaigns,
which is necessary to capture the temporal variations in
MAC at the sites.

Results and discussion

Overview of the aerosol properties

We summarize relevant observations from the three
campaigns in Table 1. We report the results using 4-h

averages, in order to dampen both the temporal vari-
ability and measurement uncertainty within the data.
For all studies, the ambient BC mass concentration
was roughly 0.11 mg m�3 yet with a relatively large
standard deviation during each campaign (nearly 70%;
see Table 1). Similarly, the observed Babs at 870 nm, as
corrected by the correction scheme reported in Bond,
Anderson, and Campbell (1999) (hereafter referred to
as B1999), was roughly 1Mm�1 across the three cam-
paigns, although the temporal variability was greater
during both GOAMAZON and CACTI (roughly
60–70%) than during LASIC (roughly 40%). Given
that we are considering 4-h-averaged data, we expect
that this variability is driven more by temporal varia-
tions than measurement uncertainty. The application
of an alternative correction method for the filter-based
absorption measurements (Li, McMeeking, and May
(2020); hereafter, L2020) reduced the corrected Babs
values by roughly a factor of two compared to B1999,
but the variability among the studies remains similar.
This comparison reinforces prior studies suggesting
that systematic biases exist among different correction
schemes for filter-based absorption photometers (Li,
McMeeking, and May 2020; Davies et al. 2019;
Saturno et al. 2017; Collaud Coen et al. 2010). This is
perhaps unsurprising, because these algorithms were
developed using different reference measures of Babs,
different aerosol types, and different input parameters;
for example, B1999 was developed using laboratory
aerosols and uses transmission through the filter (Tr)
and Bscat as inputs to the correction, while L2020 was

Table 1. Average (standard deviation) of major meteorological parameters and aerosol properties measured at the campaigns,
based on 4-h averages. MAC, Babs, and SSA are reported for 870 nm.
Dataset GOAMAZON GOAMAZON (subseta) LASIC CACTI TCAP (training data)

Location (latitude and longitude) �3.21� , �60.70� �3.21� , �60.70� �7.97� , �14.35� �32.13� , �64.73� 42.03� , �70.05�
Collection period (MM/DD/YY) 06/15/14–07/31/14 Excluding

06/24/14–07/24/14
01/14/17–01/23/17 12/01/18–12/20/18 07/16/12–08/15/12

Number of data 225 81 60 120 583
Temperature (�C) 26.62 (2.90) 26.50 (2.93) 23.94 (1.14) 18.60 (4.47) 23.45 (2.90)
Relative humidity (%) 88 (11) 88 (11) 87 (6) 71 (17) 86 (12)
Wind direction (�) 174 (106) 186 (105) 119 (7) 139 (110) 199 (79)
Wind speed (m s-1) 1.17 (0.88) 1.08 (0.79) 5.94 (1.14) 3.07 (1.78) 3.69 (1.86)
MACmeas (L2020, m

2 g-1) 6.49 (3.18) 3.53 (2.46) / 2.94 (1.03) 3.87 (1.92)
MACmeas (B1999, m

2 g-1) 13.89 (6.24) 6.94 (1.38) 7.92 (0.71) 7.37 (2.11) 7.81 (4.11)
Babs (L2020, Mm

-1) 0.49 (0.35) 0.49 (0.30) / 0.31 (0.17) 0.32 (0.28)
Babs (B1999, Mm

-1) 1.12 (0.78) 1.14 (0.74) 0.97 (0.37) 0.80 (0.49) 0.80 (0.68)
AAE 1.33 (0.24) 1.35 (0.24) 0.93 (0.06) 1.33 (0.30) 1.57 (0.66)
SAE 0.95 (0.21) 0.89 (0.23) 0.64 (0.10) 1.17 (0.64) 1.38 (0.45)
SSA (L2020) 0.96 (0.02) 0.96 (0.02) / 0.96 (0.03) 0.97 (0.02)
SSA (B1999) 0.93 (0.03) 0.93 (0.02) 0.94 (0.03) 0.92 (0.02) 0.93 (0.04)
SP2 MBC (lg m-3) 0.10 (0.07) 0.14 (0.08) 0.12 (0.05) 0.11 (0.08) 0.10 (0.07)
shell mass/BC core massb 29.1 (17.2) 16.0 (9.0) 1.5 (4.5) 24.1 (23.0) –
SP2 Dmedian (nm) 97 (4) 98 (5) 155 (4) 86 (5) –
SMPS Dmedian (nm) 50 (11) 49 (11) 119 (16) 56 (24) 68 (20)
aThe subset of GOAMAZON excludes the observations from 6/24/2014 to 7/24/2014 when MACBC values showed elevated levels (Figure 4a). The substan-
tial increase in MACBC values may be associated with the absorption enhancement of BC by mixing with organic and inorganic coatings or the presence
of larger absorbing aerosols.

bShell masses are estimated using Equation (4).
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developed using ambient aerosols and uses not only
Tr and Bscat but also SSA and AAE as inputs.

Nevertheless, we use these measurements of BC
mass and Babs (B1999 correction) to calculate the
measured values of MAC (MACmeas) at 870 nm, with
average values ranging from �7.5m2 g�1 (LASIC and
CACTI) to 13.9m2 g�1 (GOAMAZON). However,
using the L2020 correction reduces the MACmeas val-
ues to 6.5m2 g�1 for GOAMAZON and 3m2 g�1 for
CACTI; applying the L2020 correction to LASIC was
not possible, because neither raw transmittance nor
attenuation recorded by the filter-based absorption
photometer was available on the DOE ARM Data
Discovery site for that campaign. In the following sec-
tions, we use B1999 to obtain the results of MACmeas,
AAE, and SSA, unless otherwise specified. Similarly,
we used the SVM model tailored for the input varia-
bles of B1999-corrected Babs to derive MACSVM.
Finally, we note that the mean of a ratio is not neces-
sarily equal to the ratio of the mean values of two dis-
tributions, which is why the mean MAC values in
Table 1 differ from Babs divided by MBC.

Figure 3 illustrates the time series of BC particle
number distributions as a function of BC core diam-
eter (left y axis) measured by the SP2. Comparing the

number distributions between the sites, we observe
that GOAMAZON and CACTI are dominated by BC
particles between 55 and 200 nm, and CACTI appears
to have more large BC particles (i.e., >250 nm) than
GOAMAZON. At the LASIC site, the number concen-
tration of BC particles is smaller than that from the
other two campaigns, and the particles of 100–200 nm
constituted the major component of the total BC con-
centrations. The relatively small variation in the BC
size distribution at LASIC may be explained by the
small changing of wind direction at the site
(Figure 2c).

In each panel of Figure 3, the black and red curves
present the temporal changes in BC mass concentra-
tion and Babs at 870 nm, respectively. Interestingly, we
note that from 6/24/2014 to 7/24/2014 during the
GOAMAZON campaign, SP2 detected fewer BC par-
ticles smaller than 200 nm compared to the other
days, resulting in roughly 50% lower mass concentra-
tions of BC particles. However, the Babs measurements
during this period tended to be similar or slightly
greater than the other times. This abnormal period
leads to an elevated value of MACmeas in Figure 4a.
Excluding this window, MACmeas at 870 nm decreases
from 13.89 to 6.94m2 g�1 (B1999) and from 6.49 to

Figure 3. Time series (MM/DD/YYYY, based on 4-h averages) of BC number size distribution overlapped with the mass concentra-
tion of BC and Babs at 870 nm (corrected by the B1999 correction). Note that the x axis of BC core diameter in panel (a) starts at
55 nm (the other two panels start at 15 nm), based on the data provided within the DOE ARM Data Discovery website. The right
axis of Babs is scaled differently in the three panels. See the online version for a colorized figure.
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3.53m2 g�1 (L2020). We discuss this further in the
section “BC coating and its influence on model accu-
racy.” During the LASIC and CACTI campaigns, the
measured BC mass and Babs exhibited a similar pat-
tern over time, resulting in the averaged MACBC of
7.92 and 7.37m2 g�1 (B1999), respectively. We
observed a relatively small temporal variation in
MACBC during LASIC (roughly 10%), presumably
because the wind direction and aerosol sources were
very consistent (Figure 2c and Figure S1a).

Variability of MAC obtained by different methods

We next compare time series of MACSVM to time ser-
ies of MAC derived from observations (i.e., MACmeas)
using B1999 for GOAMAZON (Figure 4a), LASIC
(Figure 4b), and CACTI (Figure 4c). Generally, our
machine learning model performs well. With the
exception of the period within GOAMAZON dis-
cussed previously and for some of the periods within
CACTI, MACSVM agrees with MACmeas within the
model’s uncertainty (shaded region in Figure 4).
Moreover, the SVM model generally captures the tem-
poral variability in MACmeas (ranging from 10% to

70%, depending on the campaign); temporal variations
cannot be captured by the standard assumption of
roughly 4.5m2 g�1 at 870 nm. The reduced perform-
ance of the SVM model during CACTI is not surpris-
ing considering the variability of wind direction and
likely contribution of different sources to BC particles.
For example, wind erosion of dust due to local con-
vective storms (Schumacher et al. 2021) and the
resulting large airborne particles (SAE < 0.5) may
partially explain the degradation of the SVM model,
as we discuss in May and Li (2022); transport of min-
eral dust or sea spray aerosols to the observation site
during GOAMAZON may also be a plausible explan-
ation for poor agreement during the 6/24/2014 to 7/
24/2014 period.

We expand upon these comparisons in Figure 5,
which presents box-and-whisker plots of MACmeas

(using both B1999 and L2020, where possible) as well
as our predictions: MACSVM, MACRDG, MACMie,ext,
MACMie,int, and MACempirical for all three campaigns.
GOAMAZON results include the full dataset (Figure
5a) as well as the subset discussed previously (Figure
5b). We also provide the “standard” MACBC at
870 nm based on Bond and Bergstrom (2006) inferred
using AAEBC ¼ 1, that is, 4.74m2 g�1 (dashed

Figure 4. Time-series (MM/DD/YYYY) of MACmeas and MACSVM at 870 nm obtained from the three campaigns. The shaded area rep-
resent a 34% prediction uncertainty of the SVM model reported in Li and May (2020a). Note that the y axis in panels (a) differ
from those in (b) and (c) due to the enhanced MACmeas values between 06/24/14 and 07/24/14 at GOAMAZON. See the online ver-
sion for a colorized figure.
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horizontal lines). The predicted MACBC values from
different models are not consistent. For example, the
empirical model always produces the highest predic-
tions (MACempirical), leading to roughly 30% over-pre-
diction compared to MACmeas in Figures 5b–d, which
suggests that some BC particles may not be internally
mixed. Conversely, Mie theory with an assumption of
external mixing (MACMie,ext) results in the lowest val-
ues: roughly 2m2 g�1 for all datasets. Hence,
MACMie.int values are greater than MACMie.ext by fac-
tors up to 2, resulting in good agreement compared to
the “standard” MACBC for all three campaigns. As
described above, the raw modeled MACRDG was
adjusted by a factor of 0.9 to 1.3 as recommended in
Liu et al. (2020) to account for uncertainties. With the
exception of the full GOAMAZON dataset (which is
arguably bimodal with central values around 5m2 g�1

and 15m2 g�1, as in Figure 4a), Figure 5 suggests that
the standard assumption cannot represent any of these
data.

We quantify the performance of each method for
estimating MACBC in Table 2 by calculating the dif-
ference between the mean predicted value and
MACmeas as well as a t-test comparing the two means.
Based on this analysis, our SVM model performs well;
with the exception of the full GOAMAZON dataset,
the difference between the mean values of MACSVM

and MACmeas are generally small and not statistically
significant. Conversely, the performance of the other
models is variable across sites. For example, the RDG-

FA approximation (MACRDG) and core-shell Mie the-
ory (MACMie.int) generally agree with GOAMAZON
subset corrected by L2020 in Figure 5b and CACTI in
Figure 5d, but they under-predict MACmeas for LASIC
(Figure 5c). Notably, the variability of MACmeas

observed during the three campaigns (Table 1 and
Figure 4) cannot be captured by the RDG-FA theory,
because it does not take into account the temporal
variability, even with the simple adjustment that we
have applied. Similarly, the Mie theory models and
the empirical model rely on the BC mass measured by
the SP2, so they are not applicable for the locations
without the deployment of an SP2; the lack of an SP2
appears to be common in many long-term observa-
tional sites (e.g., the US DOE ARM fixed-location
observatories and many sites within the US National
Oceanic and Atmospheric Administration Global
Monitoring Laboratory Federated Aerosol Network).

Figure 5. Comparison between MACmeas and predicted MAC by different methods. For the studies of GOAMAZON and CACTI, both
B1999 and L2020 corrections were used to derive the filter-based Babs and MACmeas. Similarly, the corresponding two versions of
SVM model were applied when predicting MACSVM. The boxplots in panels (a) and (b) are derived using all GOAMAZON data and
a subset excluding 06/24/14–07/24/14, respectively. The dashed red line represents MAC of 4.74m2 g�1 (the “standard
assumption” with AAE ¼ 1). Note that the y axis range is different in panel (a). See the online version for a colorized figure.

Table 2. The differences between the means of the predicted
MACBC values and MACmeas. The underlined and italicized val-
ues in the table indicate t-tests yielding p-value > 0.05 (i.e.,
no statistical significance between prediction and
observation).

SVM RDG Mie.ext Mie.int Empirical

GOAMAZON (full; L2020) �2.92 �3.01 �4.95 �2.68 8.37
GOAMAZON (full; B1999) �7.19 �11.17 �12.39 �10.12 0.9
GOAMAZON (subset; L2020) 0.26 0.14 �1.62 0.35 8.57
GOAMAZON (subset; B1999) -0.30 �3.87 �5.54 �3.57 4.66
LASIC (B1999) 0.003 �4.65 �5.64 �3.15 1.93
CACTI (L2020) 0.34 0.18 -0.28 0.98 7.95
CACTI (B1999) -0.23 �3.91 �4.42 �2.92 3.95
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On the other hand, our model is built on real-time
measurements of aerosols common to these sites and
does not appear to be hindered by the fact that it
does not explicitly represent the underlying physics of
aerosol light absorption (e.g., it is agnostic to aerosol
mixing state). Thus, it has the potential to be general-
izable across different atmospheric environments.

The variability caused by different correction algo-
rithms applied to Babs cannot be ignored when deriv-
ing MACmeas. As a result, an efficient MACBC

prediction model should take into account the uncer-
tainty of Babs and adjust its parameters. As seen in
Figure 5, only the SVM model can yield consistent
agreement with MACmeas when changing from B1999
to L2020, especially for the GOAMAZON subset
(panel (b)) and CACTI (panel (d)). Interestingly, the
RDG and Mie models tend to agree better with the
MACmeas using L2020, but the empirical model agrees
better with MACmeas using B1999. In Li, McMeeking,
and May (2020), we developed our algorithm for fil-
ter-based photometer corrections using the Babs obser-
vations from a photoacoustic instrument, so this
version of the SVM model will be also suitable for
photoacoustic measurements. Similar to the lower
MACmeas values observed when applying the L2020
correction for photoacoustic measurements, Wei et al.
(2020) assessed the MACBC values derived by different
techniques in the literature and found that photoa-
coustic spectroscopy data exhibit a 20% lower MACBC

than filter-based studies.

BC coating and its influence on model accuracy

As we have stated previously, the enhancement of
light absorption due to a lensing effect could bias the
MACBC results, because the coating layer can act as a
focusing lens to enhance the incoming light to the BC
cores. Thus, it is important to investigate how the
proposed MACBC models perform when BC particles
are coated by other materials at various thicknesses.
For this purpose, we evaluate the relationship between
BC coating state and the accuracy of different models
in this section, with the inherent assumption that all
BC is internally mixed with other aerosol species.
Using the measurements from both SP2 and SMPS
during the three campaigns, we calculated Eabs as the
ratio of Babs (core-shell) to Babs (uncoated), both
obtained from the appropriate Mie theory calculation.
To estimate the ensemble-average relative coating
thickness, we use the term Ratiomass (Cappa et al.
2019; Wu et al. 2018; Liu et al. 2015), which is defined
as the coating-to-core mass ratio of BC-containing

particles (i.e., masscoating in Equation (3) divided by
SP2-derived BC mass). It is worth noting that the esti-
mated Eabs from this work may differ from the meas-
ured Eabs in literature (using a thermodenuder to
remove the coatings of BC particles). Fierce et al.
(2020) reported the overestimate of Eabs by core-shell
Mie theory and found that the deviation could be due
to the inadequate consideration of heterogeneity
among BC-containing particles and the simplification
of core-shell approximation.

In general, we find that Eabs increases with increas-
ing Ratiomass, but the relationships vary across cam-
paigns (Figure 6). For the LASIC and CACTI
campaigns, the growth of Eabs is steep in the Ratiomass

range of 2� 15, and then plateaus at Eabs � 2.2
beyond Ratiomass � 20. On the other hand, the
GOAMAZON campaign has broader ranges of both
Eabs and Ratiomass, resulting in a later transition to a
plateau at roughly Eabs � 2.7 and Ratiomass � 60.
Figure 6 also shows that the extremely high MAC val-
ues between 6/24 and 7/24 at GOAMAZON are asso-
ciated with greater values of Eabs and Ratiomass (light
blue markers). Although we do not have a full explan-
ation for this period of GOAMAZON, our results sug-
gest that either substantial coating materials
condensed upon BC-containing particles, resulting in
an enhancement effect of MACBC, or the BC was only
partially internally mixed; that is, it is also externally
mixed with other absorbing material such as tar-like
brown carbon or mineral dust. However, our SVM
model was unequivocally the most accurate model in
predicting MACBC for laboratory-generated biomass
burning emissions in Li and May (2020a), so the
extent to which tar-like brown carbon influenced
these results during GOAMAZON may be small.

Our observation in Figure 6 is consistent with pre-
viously published simulations and measurements of

Figure 6. Variation in Eabs (870 nm) as a function of Ratiomass.
The lines (estimated by exponential functions) are used only to
guide the eye. GOAMAZON (exclusive) refers to the subset of
the data discussed elsewhere. See the online version for a
colorized figure.
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Ratiomass-dependent Eabs for internally mixed BC par-
ticles. Wu et al. (2018) described the relationship
between Ratiomass and Eabs as a multistage process
which is dependent on particle morphologies and sizes
(Start: Eabs < 1.2 and Ratiomass < 1; Rise:: 1.2<Eabs
< 2.55 and 1< Ratiomass < � 200; Stable: Eabs > 2.55
and Ratiomass > 200). By comparing to laboratory and
field measurements, they found that Eabs of BC par-
ticles that have undergone atmospheric aging varied
from 1.8 to 2.7, which is in agreement with our results
at the three ambient observational sites. In contrast, if
the ambient environment has continuous and fresh
emission of BC particles, the magnitude of Eabs is typ-
ically small (Cappa et al. 2012).

We next investigate how BC coatings influence the
performance of different predictive MACBC models.
Here, we focus on the results of MACSVM and
MACMie,int, because they are in good agreement with
MACmeas for all three campaigns in Figure 5.
Moreover, because of the focus on coated BC par-
ticles, the inclusion of either RDG-FA or Mie theory
for external mixtures is inappropriate. In our analysis,

we assess the accuracy of the predicted MACBC using
the EPA-recommended scaled relative difference
(SRD) between MACmodel and MACmeas (Gorham
et al. 2021; Hyslop and White 2009):

SRD ¼ MACmodel �MACtrueð Þ= ffiffiffi
2

p

MACmodel þMACtrueð Þ=2 (7)

The SRD normalizes the difference between two
values by their mean and includes a term of

ffiffiffi
2

p
to

account for uncertainty in the values.
The SRD results of the SVM and Core-shell Mie

models are shown against Ratiomass in Figure 7.
Overall, a negative trend (i.e., a proportional bias)
exists between SRD and Ratiomass for our SVM model.
When Ratiomass is greater than roughly 30, the SVM
model underestimates the measured value by roughly
a factor of two (SRD � �0.5); however, when
Ratiomass is less than roughly 25, the majority of the
SVM results fall within the SRD ¼ ±0.2, which corre-
sponds to roughly ±33% difference between the val-
ues. This relatively good agreement at the lower
values of Ratiomass is expected, because these are more

Figure 7. MACBC model prediction accuracy as a function of Ratiomass. The dashed horizontal lines encapsulate the region of points
where predictions agree with the measured value within ±33%, and the dashed vertical line represents the upper bound of
Ratiomass in the TCAP training data. The GOAMAZON dataset are separated into the time period between 6/24/14 and 7/24/14 and
the remainder of the campaign (denoted as “exclusive” in the legend). Note that the x axis of three campaigns is different. See
the online version for a colorized figure.
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representative of the TCAP training dataset (mean ¼
8.18 ± 3.78; range: [0.67, 19.96]). We did not calculate
Eabs for TCAP because SP2 size distributions are
unavailable through the US DOE ARM Data
Discovery; however, based on the empirical relation-
ship from Chakrabarty and Heinson (2018) for
internal mixtures: Eabs ¼ 1:0 � Ratiomassð Þ0:33, an esti-
mated mean value of Eabs for TCAP is 2.00 (with a
range of 0.88–2.69) which is more similar to the Eabs
values observed at CACTI and LASIC (Figure 6).
Because both CACTI and LASIC have lower overall
Ratiomass and Eabs, similar to the training data, our
SVM model generally works well for the entirety of
these datasets. Consequently, if the ambient environ-
ment has BC particles with mild to moderate coating
thickness, we infer that our SVM model will work
fairly well to estimate MACBC; otherwise, if the BC
particles are thickly coated, MACSVM is lower than
measured values, likely because the model is extrapo-
lating away from the range constrained by the training
data.

In contrast, no obvious trend exists between SRD
and Ratiomass for the core-shell Mie model, but sys-
tematic biases are present. For example, if B1999 is
used to correct Babs data, MACMie.int is biased low

with a mean SRD of roughly �0.3 across the three
campaigns (Figures 7a–c), suggesting that our assump-
tion that the coating material is non-absorbing is
incorrect. However, when we use L2020, the predic-
tions from MACMie.int are more similar to MACSVM,
and in the case of the CACTI data, MACMie.int is
biased slightly high; this latter observation may sug-
gest that not all of the non-BC material is internally
mixed with BC.

Practical assessment of the models

Our analysis of BC particles during field observations
suggests that there is no perfect approach to predict
MACBC with good performance under all environ-
mental conditions (summarized in Table 3). However,
given our intention to develop a simple yet relatively
robust model to estimate atmospheric MACBC values,
the results reported in the present work and our other
work (May and Li 2022; Li and May 2020a) suggest
that our SVM model has potential. Although it is not
a physics-based model, it is physics-inspired in that it
emulates light scattering theory by using proxies for
aerosol size distributions and aerosol composition.
Moreover, while it is agnostic to properties specific to

Table 3. A comparison of MACBC prediction models and their performance for different atmospheric BC particles.
Approach Required measurements Key assumptions Accuracy Major limitations

Field observations � BC mass concentration
� Babs at desired k

� N/a High � Observations may not
exist at all locations

Standard assumption � N/a � Fresh BC particles Variable � The value may not be
applicable for aged
BC particles

� It cannot capture
spatiotemporal
variability

RDG-FA � N/a � Fractal
aggregate morphology

� BC density
� BC complex

refractive index

Variable � Aggregates may
become more compact
in the atmosphere

� It cannot capture
spatiotemporal
variability

Mie theory (external mixing) � BC mass concentration
� BC size distribution

� Spherical particles
� BC is externally mixed
� BC density
� BC complex

refractive index

Generally underpredicts � Exact morphology and
mixing state may
be unknown

� Assumptions of aerosol
microphysical
parameters are required

Mie theory (core-shell) � BC mass concentration
� BC size distribution
� Total particle size

distribution

� Spherical particles
� BC is internally mixed
� BC density
� BC complex

refractive index
� Coating material density
� Coating material

complex refractive index

Variable � Exact morphology and
mixing state may
be unknown

� Assumptions of aerosol
microphysical
parameters are required

SVM � Babs at multiple k
� Bscat at multiple k
� Total particle size

distribution

� N/a Relatively high under
certain conditions

� Degradation to
performance when
aerosols are different
from the training data

Empirical � BC mass concentration
� Total particle mass

concentration

� BC is internally mixed Generally overpredicts � Exact mixing state may
be unknown
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BC (e.g., complex refractive index, mixing state), it
can capture most time-series trends. Therefore, our
SVM model may represent a useful approach toward
converting between BC light absorption and BC mass
concentrations—which has implications for the evalu-
ation of chemistry-climate model predictions of BC
radiative forcing.

The assumptions related to aerosol microphysics
(e.g., volume ratio of shell to core, refractive indices of
BC and coating material, and particle densities) play
important roles for theoretical models. For example,
the calculated MACBC values from both the RDG-FA
approximation and Mie theory models are sensitive to
the refractive indices of particles. Assuming a different
BC complex refractive index, for example, 1.8þ 1.4i at
870 nm from Forestieri et al. (2018), we calculate
MACRDG ¼ 5.03m2 g�1, which is 60% greater than
our original estimation of MAC (3.06m2 g�1). This
new MACRDG agrees better with the value of 4.74m2

g�1 extrapolated from the recommended value from
Bond and Bergstrom (2006) assuming AAE ¼ 1.
Similarly, the underestimation of MACBC by Mie the-
ory for external mixing can be improved by increasing
the imaginary refractive index of BC. In the core-shell
configuration of Mie theory, the complex refractive
index of the coating material is another free parameter,
which has been found to result in greater uncertainty
in Eabs and MACBC than the variation in the BC’s
refractive index (Zhang et al. 2018).

In ambient air, the exact mixing states and mor-
phologies may be unknown. For simplicity, we only
considered theoretical frameworks for fresh fractal
aggregates, externally mixed particles, and concentric
core-shell internally mixed particles. However, the
geometry of partially coated BC (i.e., inhomogeneous
internal mixtures) is likely (Wang et al. 2021; Fierce
et al. 2016, 2020; Wu et al. 2018). There have been
some theoretical studies that have explored the
absorbing properties of partially coated BC using
complex models with many free parameters (Zhang
et al. 2018; He et al. 2015), but the applicability of
these models to real-world observations is limited by
a lack of empirical constraints on these parameters.

Conversely, our SVM model does not require any
assumptions on particle mixing states and morpholo-
gies. However, its main limitation is the training data.
The model was trained using input values from
TCAP, and while some input values from
GOAMAZON, CACTI, and LASIC were similar to the
training data, others were not. For example, during
LASIC, the mean AAE and SAE were 0.93 ± 0.06 and
0.64 ± 0.10, respectively, while in the training data,

these values were 1.57 ± 0.66 and 1.38 ± 0.45. Thus,
our SVM model is effectively extrapolating for the
majority of the LASIC data. Nevertheless, our SVM
model appears to be generalizable, in that it tends to
perform well even for scenarios divergent from the
training data. Consequently, although our SVM model
does not require the input of particle mixing state
during its implementation, some knowledge of the
mixing state is still required to either verify if
the model is used in the right regime or to train the
model on other regimes.

However, one factor influencing the evaluation of
all models is measurement uncertainty, especially for
low values of Babs. Based on Ogren et al. (2017), we
infer an uncertainty of roughly 25% when Babs ¼
1Mm�1 using B1999; in Li, McMeeking, and May
(2020), we estimate an uncertainty of 10% for our
algorithm. Moreover, May et al. (2014) estimated an
uncertainty of roughly 22% for SP2 measurements of
BC mass concentrations. Therefore, propagating this
uncertainty via quadrature, we obtain estimates in
MACmeas of roughly 24% (L2020) and roughly 34%
(B1999). These uncertainties are similar to the relative
standard deviations presented in Table 1, for example,
for both B1999 and L2020, the relative standard devi-
ation is roughly 50% for both GOAMAZON and
TCAP, and it is roughly 35% for CACTI. However,
given our 4-h averaging time used in our data ana-
lysis, we expect that the effect of measurement uncer-
tainty is largely dampened, which is supported by the
clear temporal trends for all datasets in Figure 3.
Thus, while measurement uncertainty cannot be com-
pletely discounted, we argue that it plays a small role
in our analysis and interpretation.

Conclusions

We have used theoretical (both RDG-FA approxima-
tion and Mie theory), empirical (Chakrabarty and
Heinson 2018), and machine learning (Li and May
2020a) models to estimate MACBC of black carbon par-
ticles at 870 nm using inputs from different observa-
tional sites. The comparison between the modeled and
measured response of MACBC suggests that the SVM
model is more accurate across these different environ-
ments than the other models, as the SVM model yields
consistently good agreement with MACmeas over the
three sites. Moreover, the derived MACmeas values vary
by a factor of 2 when the correction algorithm applied
to filter-based Babs data changes (B1999 vs. L2020);
only the SVM model can adapt to these differences, as
we have built different bias corrections into a data pre-
processing step for this model. Importantly, most of
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these models capture the temporal variability in
MACmeas—ranging from 10% to 70% (Table 1)—which
the standard assumption (a constant value with ± 20%
uncertainty) simply cannot do.

Generally, the accuracy of the theoretical and
empirical models that we have considered is not as
good as our SVM model (Figure 5; Table 2). More
complex and sophisticated optical models, such as
multiple-sphere T-matrix (MSTM) and generalized
multi-particle Mie (GMM), may provide MACBC

closer to reality (Wei et al. 2020). However, these
models are typically time-consuming and rarely
applied to long-term BC monitoring. Liu et al. (2017)
estimated that the computational time of the MSTM
method for single BC aggregates comprised of 200
monomers is on the order of 10 s, using “a single
node with 24 64-bit 2.5 GHz processors.” Conversely,
our SVM model takes less than 1min to predict 3000
MACBC values for the dataset provided in Li and May
(2020b) using a laptop computer. One caveat is that
when the SVM model performs calculations using
observations outside of the data on which it was
trained (e.g., Ratiomass > 20), its predictions may
become unreliable, so future work may be needed to
train the SVM model using a set of aerosol properties
from a more diverse set of field observations.
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